

XGFM-D 互感器综合测试仪 XGFM-D CT/PT Tester

使用说明书

User's Manual

武汉西高华电电气有限公司

Wuhan Xigao Huadian Electric Co.,LTD

	目录	
前 言		1
1. 设计用途		5
2. 参考标准		5
3. 主要特征		5
4. 主要功能		5
5. 技术参数		6
6. 产品硬件结构		7
7. 操作方式		6
8. CT 测试		6
9.PT 测试		15
10. 数据查询		20
11. PC 软件		21
12. 附录		24

前言

本手册的目的是为了让使用者熟悉、安全、正确、有效地操作使用互感器测试仪。 参照这些指示将有助于防止危险、减少修理费用及由于不正常操作所导致的仪器故障。此 外,还可以确保测试仪的可靠运作和使用周期。

测试仪的使用必须遵照现有的关于防止事故发生和环境保护的各项相关标准所规定的所有安全要求。

只阅读测试仪使用手册并不能免除您必须遵守相关的所有国家及国际的安全规程。

用户手册必须在测试仪使用的现场时刻备有。所有使用和用测试仪工作的用户必须要阅读它。

除了要遵守使用手册及本国和地方的一些关于防止事故发生的安全规程,还要注意用于安全 和恰当工作的公认的技术流程。为保障自身安全的安全规则

符号注释

在本手册中,不同的符号用于强调特定的安全/操作方式。这些符号分列如下:

注意

表示有特殊意义的说明或额外的重要信息。

警告

标记与安全相关的特殊章节。

电气危险

强调对身体和生命有潜在危险的行为或指导。 仅由具有资质的 人员操作,并且需十分小心和注意安全规程。

安全操作

- 如果不是在实验室环境下,测试仪必需要可靠接地连接后才可以使用。接地点的选择应该 尽量靠近测试对象。
- 断开电缆连接时,总是从输送功率的装置开始。
- 在装置有输出时,切勿连接或断开测试对象。因为外部感应存贮的能量可能导致致命的高 电压。
- 在测试时,总是保持互感器高压侧的一个端子接地。
- 不要将其它物体插入通风口或是输入/ 输出口。
- 在将测试仪置入运行前,检查测试仪是否有可见的损坏。
- 不要在多雨或潮湿气候下操作测试仪。
- 不要在易爆气体或蒸汽存在的环境下操作测试仪。
- 在将测试仪投入操作前,确保通风口,电源开关和电源插座没有被阻塞。
- •测试仪的内部可能产生高电压!因此,只有具备资质的人才允许打开测试仪。
- •为了防止寄生电流或电压,总是将测试仪的等电位地接到保护地。
- 确保连接到测试仪的测试对象的端子不带任何电位。在测试中,测试仪是测试对象的唯一 允许电源。
- 当测量互感器的变比时,请确保接线正确,否则在互感器内部可能产生危及生命的电压, 并损坏连接的互感器者是测试仪!
- 面板上的输入/ 输出插口的接线只能用带有 4 mm2 安全"香蕉"插头和塑料外壳的电缆。
- 不要站在靠近或正在连接头的下面,夹钳可能跌落砸伤。
- 如果测试仪或者任何附加装置或是附件看起来不能正常工作,请停止使用。

注意:

- 1、为了人身及设备安全,使用前请详细阅读说明书,并严格参照要求规范操作。
- 2、试验前请将仪器可靠接地。
- 3、本测试仪为**互感器离线测试**装置,在对互感器进行各项试验时,请务必将互感器 各端子上的连接线甩开。
- 4、CT变比极性试验时,应将不检测的二次绕组短接。

🍂 5、做 PT 伏安特性试验时,一次绕组的零位端接地。

6、实验中严禁触碰所有测试端子。

本公司保留对此说明书修改的权利,产品与说明书不符之处,以实际产品为准。

一.设计用途

设计用于对保护类、计量类 CT/PT 进行自动测试,适用于实验室也适用于现场检测。

二.参考标准

GB 1207-2006、GB 1208-2006

三.主要特征

- 支持检测 CT 和 PT
- 满足 GB1207、GB1208 等规程要求.
- •无需外接其它辅助设备,单机即可完成所有检测项目.
- 自带微型快速打印机、可直接现场打印测试结果.
- 操作简便,带有智能提示,使用户更易上手操作。.
- 大屏幕液晶,图形化显示接口.
- 按规程自动给出 CT/PT (励磁) 拐点值.
- 自动给出 5%和 10%误差曲线.
- 可保存 3000 组测试资料, 掉电后不丢失.
- 支持 U 盘转存资料,可以通过标准的 PC 进行读取,并生成 WORD 报告.
- 小巧轻便≤22Kg,非常利于现场测试.

四. 测试仪主要测试功能:(见表1)

CT(保护类、计量类)	РТ
• 伏安特性(励磁特性)曲线	• 伏安特性(励磁特性)曲线
• 自动给出拐点值	• 自动给出拐点值
• 自动给出 5%和 10%的误差曲线	• 变比测量
 变比测量 	• 极性判断
• 极性判断	• 交流耐压测试
• 一次通流测试	 铁心退磁
• 交流耐压测试	
• 铁心退磁	

表1

五. 测试仪主要技术参数: (见表2)

项目		参 数		
工作申	围源	AC220V±10% 、50Hz		
设备轴	俞出	0~1000Vrms, 5Arms(20A 峰值)		
		注: 0~5A 为真实值,大于 5A~20A 为计算值		
大电流输出		0~600A		
励磁精度		≪0. 5%(0.2%* 读数 +0.3%* 量程)		
СТ	范围	$\leq 25000 \text{A}/5 \text{A} (5000 \text{A}/1 \text{A})$		
变比测量	精度	≪0. 5%		
PT	范围	≪500KV		
变比测量 精度		≤0.5%		
工作环境		温度:-10℃ ~ 40℃,湿度:≤90%,海拔高度:≤1000m		
尺寸、重量		尺寸: 410mm × 260mm × 340mm , 重量: ≤22Kg		

表 2

5.1. 工作条件要求

1、输入电压 220Vac±10%、额定频率 50Hz;

2、测试仪应该由带有保护接地的电源插座供电。如果保护地的连接有问题,或 者电源没有对地的隔离连接,仍然可以使用测试仪,但是我们不保证安全;

- 3、参数对应的环境温度是 23℃±5℃;
- 4、保证值在出厂校验后一年内有效。

六. 产品硬件结构

6.1. 面板结构: (图1)

图 1

6.2. 面板注释:

- 1 —— 设备接地端子
- 2 ——U 盘转存口
- 3 ——打印机
- 4 ——液晶显示器
- 5 ——P1、P2: CT 变比/极性试验时,大电流输出端口
- 6 ——S1、S2: CT 变比/极性试验时,二次侧接入端口
- 7 ——K1、K2: CT/PT 励磁(伏安)特性试验时,电压输出端口
- 8 ——A、X: PT 变比/极性时, 一次侧接入端口
- 9 ——a、x: PT 变比/极性时,二次侧接入端口
- 10 ——**D1、D2 :** 备用
- 11 ——过流保护(功率)开关
- 12 ——主机电源开关
- 13 ——主机电源插座

七. 操作方式及主界面介绍

7.1、主菜单 (见图 2)

开机之后默认进入 CT 测试, CT 测试主菜单共有"**伏安特性**"、"**变比极** 性"、"**交流耐压"、"二次回路"、"数据查询"、"退磁"、"系统设置"、 "PT"7**种选项,

PT 测试主菜单共有"**励磁**"、"**变比极性**"、"**交流耐压**"、"**数据查询**"、 "退磁"、"CT"6种选项,可以使用旋转控制器进行选择和设置。如图3 所示,当"类型"后面为带有灰色背景的 PT 时表示当前为 PT 测试。旋转 光标到"CT"并按下,则进入 CT 测试界面,如图2。

图 2, CT 主界面

图 3, PT 主界面

八. CT 测试

8.1、 CT 励磁(伏安)特性测试

在 CT 主界面中,点击"伏安特性" 选项后,即进入测试界面如图 4。

(1)、参数设置:

励磁电流:设置范围(0-20A)为仪器输出的最高设置电流,如果实验中电流达到设定值,将会自动停止升流,以免损坏设备。通常电流设置值大于等于 1A,就可以测试到拐点值。

励磁电压:设置范围(0-1000V)为仪器输出的最高设置电压,通常 电压设置值稍大于拐点电压,这样可以使曲线显示的比例更加协调,电压设 置过高,曲线贴近Y轴,电压设置过低,曲线贴近X轴。如果实验中电压达 到设定值,将会自动停止升压,以免损坏设备。

(2)、试验:

接线图见界面,测试仪的 K1、K2 为电压输出端,试验时将 K1、K2 分别接互感器的 S1、S2(互感器的所有端子的连线都应断开)。检查**接线无**误后,合上功率开关,选择"开始"选项,即开始测试。

试验时,上方白色状态栏会有提示"正在测试",测试仪开始自动升压、 升流,当测试仪检测完毕后,试验结束并描绘出伏安特性曲线图。

注意: 图 4 中 "校准"功能: 主要用于查看设备输出电压电流值,不用于 互感器功能测试,详情见附录一。

	CT伏安特性测试	
参数设置	編号 最大电压 V 最大电流	● 仪器接线端 ● K2 K2 C T 52 P2
	电压 V 电流 A	★ 按下开始,伏 安特性测试立 即开始 开始

图 4, CT 励磁特性测试界面

图 5, CT 伏安特性结果图

2)、伏安特性(励磁)测试结果操作说明

试验结束后,显示出伏安特性测试曲线及数据(见图 5)。该界面上 各操作功能如下:

打 印: 点击"打印"后,先后打印伏安特性(励磁)曲线、数据,方便用 户做报告用。同时减少更换打印纸的频率,节省时间,提高效率。

励磁数据:点击"上页"、"下页"即可实现数据的上下翻。

保存:点击"保存"选项,按下即可将当前所测数据保存,保存成功后,状态栏显示"保存完毕"。并且可在数据查询菜单中进行查看。

误差曲线: 点击"误差曲线"选定后, 屏上将显示伏安特性试验的误差曲线的

设置,设定参数后,选择 5%或 10%误差曲线即计算出的误差曲线。 自定义打印:程序会按照表格中的 10 个电流值进行打印。

以下四项为误差曲线计算时的设置项:

额定负荷 : CT 二次侧额定负荷。

额定二次 : CT 的二次侧额定电流

ALF: 准确限值系数,如: 被测 CT 铭牌为 "5P10", "10" 即为限制 系数。

5%: 自动计算出 5%误差曲线数据并显示误差曲线。

10%: 自动计算出 10%误差曲线数据并显示误差曲线。

2、退磁试验

1)参数设置:

在 CT 主界面中,选择"退磁"后,进入测试界面见图 6,设置 二次侧额定电流: 1A 或 5A。

CT退磁测试	
二次额定电流 A	● 仪器接线端 K1 K2 K1 K2 S1 CT S2 P2
开始停止	

图 6, CT 励磁结果图

2) 试验:

测试仪的 K1、K2 为电压输出端,试验时将 K1、K2 分别接互感器的 S1、S2(互感器的所有端子的连线都应断开)。检查**接线无误后**,合上功 率开关,选择"开始"选项,即开始退磁。

试验完毕,装置会自动停止,界面提示"退磁完毕"。

3、CT 变比极性试验

1)参数设置:

在 CT 主界面中,选择"变比极性"后,进入测试界面见图 7,设置 一次侧测试电流: 0 ~600A,测试仪 P1、P2 端子输出的最大电流; 二次侧额定电流: 1A 或 5A。

2)试验:

CT 一次侧接 P1、P2, CT 二次侧接 S1、S2, 不检测的二次绕组要短接,设置二次侧额定电流及编号后,合上功率开关,选择"开始"选项,试验即开始。

上方白色状态栏会有提示"正在测试",直至试验完毕退出自动测试界面,或按下"停止"人为中止试验,装置测试完毕后会自动停止试验,试验完成后,即显示变比极性测试结果。可以选择 "保存"、"打印"

及"返回"选项进行下一步操作。

仪器本身的同色端子为同相端,即 P1 接 CT 的 P1, S1 接 CT 的 S1 时, 极性的测试结果为减极性。

	CT变比极性测试	
参	编号	
数设置	一次最大电流 A	
	二次额定电流 📃 🗛	停止
	一次测试电流 A	
测试	二次测试电流	
結果	变比 A: A	
	极性	
	打印保存	

图 7, CT 变比极性测试界面

4、CT 角差比差试验

1) 参数设置:

在 CT 主界面中,选择"角差比差"后,进入测试界面(图 8),(注: 应参照互感器铭牌上的实际额定变比值设定)

额定一次: CT 的一次额定电流: 0~25000A

- 额定二次: 5A/1A。
- 额定负荷: 互感器容量。
- 实际负荷:根据额定负载的设定,可自动计算满载与轻载两种状态值 (轻载为满载的25%)。
- 2) 试验:

CT 一次侧接 P1、P2, CT 二次侧接 S1、S2。设置参数并检查接线无误后,合上功率开关,选择"开始"选项,试验即开始。

试验过程中通过按下控制器可终止试验,测试完毕后自动计算出一次侧与二次侧的相位角差,实际测的变比值与用户设定的额定变比的百分比差。可以选择"保存"、"打印"及"退出"选项进行下一步操作。

	CT 角差比差测试	_			
	编号			角差(')	比差(%)
		测	1%		
	额定一次电流 A	试	5%		
参	***	箱	20%		
数沿	额定A	*	100%		
置	额定负荷 VA		120%		
	实际负荷 VA			-0	•
		\$JE			接线端 ^{P2} ⑤ S2
开始	台(停止) 返回	保存	7		

图 8 , CT 角差比差测试界面

5、CT 二次回路试验

1)参数设置:

在 CT 主界面中,选择"二次回路"后,进入测试界面(图 9),

设置好设定电流值: 0~600A。

2) 试验:

CT 一次侧接 P1、P2, CT 二次侧接二次负载。设置好通流电流后,合上功率 开关,点击"开始"选项,,试验即开始,电流保持时间以进度条显示(0~200A: 保持 10 分钟;大于 200A~300A:保持 2 分钟;大于 300A:保持 3 秒钟)。

	CT二次回路测试	
参数设置	设置电流 A	4 5 6 7 2 8 1 9 0 10
测试结果	实时输出电流 A	
	开始 停止 返回	

图 9、CT 二次回路测试界面

6、 CT 交流耐压试验

1) 参数设置:

在 CT 主界面中,选择"交流耐压"后,进入测试界面(图 10),

设置好设定电压值: 0~1000V。

2) 实验:

被测 CT 二次侧短接与测试仪电压输出口 K2 连接,电压输出口另一端 K1 连接互感器外壳。检查接线完成后,合上功率开关,选择 "开始"选 项,按下即开始升压,电压保持时间默认为1分钟,测试过程中,仪器内 部对互感器二次绕组与外壳之间的漏电流实时检测,如果发现电流迅速增 加,将会自动回零,页面会显示"不合格"。

图 10, CT 交流耐压测试界面

7、CT 负荷试验

1、参数设置:

在 CT 测试主界面中,选择进入"二次负荷"试验界面 (如图 11), 设置二次侧额定电流: 1A 或 5A。

线电阻:只在测试负载箱时使用(按照负载箱铭牌设定)

2、试验:

测试仪的 K1、K2 为电压输出端,将被测负荷(负载)接测试仪的 K1、K2 端,检查接线无误后,选择"开始"即开始试验,试验完成后,即显示负荷性测试结果,可以选择 "保存"、"打印"及"退出"选项 进行下一步操作。

	CT二次负荷测试	
参数设置	编号 线电阻 Ω 二次额定电流 A	开始返回
测试结果	测试负荷 VA	● 仪器接线端 ● K2 安阪 名荷
	打印 保存	

图 11, CT 二次负荷测试界面

8、直阻测试:

1)、校零:

在 CT 测试主界面中,选择进入"直流电阻"试验界面(如图 12), 试验前应先对测试用导线进行校零,在 CT 主界面显示菜单上选中 直流电阻 测试项,进入直阻测试界面并选择"校零",校零前将测试导线的线夹对接 (测试线短接),然后进行校零,校零完成后,界面提示"校零完毕"。

2)、试验:

校零结束后,参照图 24 接好测试线,测试仪的 D1、D2 接被测绕组, 选中 "开始" 键即开始测试,试验完成后,即显示直阻测试结果,可以 选择 "保存"、"打印"及"返回"选项进行下一步操作。

图 12, 直阻测试界面

9. PT 测试

1)、参数设置

在 PT 测试主界面中,选择进入"伏安特性"试验界面(如图 13), **励磁电流(0~20A):** 输出电流为仪器输出的最高设置电流,如果试验中电流达到设定值,将会自动停止升流。通常 1A 即可测试出拐点值。

励磁电压: 100V、100/√3、100/3、150V、220V、350V。

2)、试验:

测试仪的为电压输出端,试验时将 K1、K2 分别接互感器的 a、x ,电 压互感器的一次绕组的零位端接地。检查接线无误后,合上功率开关,选择 "开始"选项后,即开始测试。

试验时,上方白色状态栏会有提示"正在测试",测试仪开始自动升压、 升流,当测试仪检测完毕后,试验结束并描绘出伏安特性曲线图。

	PT伏安特性测试	
参数设置	編号 额定二次电压 女人电流	 ▶ PT二次做伏安特性测试时,一次会产生高压,请务必将N端接地,同时保持安全距离。 ★ 额定二次电压务必设置正确,仪器会根据设定的二次电压自动测试并显示二次电压10%到190%的测试值。
	电压 V 电流 A	

图 13, PT 励磁特性参数设置界面

3)、PT(励磁)测试结果操作说明

请参考 CT 测试结果说明

3、 PT 退磁试验

PT退磁测试	
◆ PT 生気に 持安望 二次额定电压 V	欠做退磁测试时,一次会产 E,请务必将N端接地,同时保 E距离。
开始 停止 返回	

图 14 PT 退磁试验

1)、参数设置

在 PT 测试主界面中,选择进入"退磁"试验界面(如图 14), 设置额定二次电压值: 100V、100/√3、100/3、150V、220V、350V。

2)、试验:

测试仪的为电压输出端,试验时将 K1、K2 分别接互感器的 a、x , 电 压互感器的一次绕组的零位端接地。检查接线无误后,合上功率开关,选择 "开始" 选项后,即开始退磁。

退磁过程中时,上方白色状态栏会有提示"正在测试",当测试仪 检测完毕后,,装置退磁会自动停止。

3、PT 变比极性试验

1)参数设置:测试界面见图 15。

一次: 0~2500V。

二次: 100V、100/√3、100/3、150V、220V。

2) 开始试验:

PT 一次侧接 A、X, PT 二次侧接 a、x。设置二次侧额定电压及编号 后, 合上功率开关, 选择 "开始"选项, 按下控制器, 试验即开始。

上方白色状态栏会有提示"正在测试",直至试验完毕退出测试界面,或按下控制器人为中止试验,试验完成后,即显示变比极性测试结果。可以选择"保存"、"打印"及"退出"选项进行下一步操作。

仪器本身的同色端子为同相端,即A接PT的A,X接PT的X时, 极性的测试结果为减极性。

图 15, PT 变比极性测试界面

4、PT 角差比差试验

1) 参数设置:

在 PT 测试主界面中,选择进入"角差比差"试验界面(如图 16),(注: 应参照互感器铭牌上的实际额定变比值设定)

额定一次: 3~500KV

额定二次: 100V、100/√3、100/3、150V、220V

额定负荷: 互感器容量。

实际负荷:根据额定负载的设定,可自动计算满载与轻载两种状态值 (轻载为满载的25%)。

2) 试验:

PT 一次侧接 A、X, CT 二次侧接 a、x。设置参数后,选择"开始"选项,按下控制器,试验即开始。

试验过程中通过按下控制器可终止试验,测试完毕后自动计算出一次 侧与二次侧的相位角差,实际测的变比值与用户设定的额定变比的百分比 差。按下"打印"即可打印出测试结果,"保存"即可保存测试结果, "退出"可返回至参数设置菜单。如果显示均为9,则说明误差超出显示 范围,请检查设定值。

16

	PT 角差比差测试			
	编号	F	角差(')	比差(%)
	额定一次电压 / KV	测试		
参数沿	额定二次电压	編集	80% 100%	
置	·····································		120%	
	 实际负荷VA		— •	<u>o</u>
		打印	JI 🔒	
开 城		保存		

图 16, PT 角差比差测试界面

5、PT 交流耐压试验

1)、参数设置:

在 PT 测试主界面中,选择进入"交流耐压"试验界面 (如图 17),

设置好设定电压值: 0~1000V。

2)、实验:

被测 PT 二次侧短接与测试仪电压输出口 K2 连接,电压输出口另一端 K1 连接互感器外壳。检查接线完成后,合上功率开关,选择 "开始"选 项,按下即开始升压,电压保持时间默认为1分钟,测试过程中,仪器内 部对互感器二次绕组与外壳之间的漏电流实时检测,如果发现电流迅速增 加,将会自动回零,页面会显示测试异常。

图 17, PT 交流耐压测试界面

6、PT 负荷试验

1)、参数设置:

在 PT 测试主界面中,选择进入"负荷"试验界面 (如图 18),

设置额定二次电压值: 100V、100/√3、100/3、150V、220V。 2)、试验:

测试仪的 K1、K2 为电压输出端,参照图 35 进行接线,将被测负荷 (负载)接测试仪的 K1、K2 端,检查接线无误后,合上功率开关,选择 "开始"即开始试验,试验完成后,即显示负荷性测试结果,可以选择"保 存"、"打印"及"退出"选项进行下一步操作。

	PT二次负荷测试	
参数	编号	开始 返回
设置	二次额定电压 V	停止 停止
测试		• 仪器接线端 • K2
統結果		▲ · · · · · · · · · · · · · · · · · · ·
	打印保存	

图 18, PT 二次负荷测试界面

7、直阻测试:

请参照 CT 直阻测试。

十. 数据查询

在 CT/PT 测试主界面中,选择进入"数据查询"试验界面(如图 19),根据需要选择"励磁"、"负荷"、"直阻"、"变比极性"、"角差比差"、"退出"等测试选项,选定测试项目后,显示仪器中该项目下所保存的最新的测试结果,可以选择"上页"、"下页"、"转存"、"退出"、"清除"选项进行相应操作。

转存时,插上U盘至测试仪通讯口"USB",点击"转存"则会将当前页面下 所显示的测试记录转存进入U盘之中。每条记录所用时间约2秒钟,转存结束后, 界面提示"转存完毕"。

图 19 数据查询界面

十一. PC 机操作软件使用说明

- 11.1 将配套光盘放入计算机光驱中,解压"软件"至电脑。
- 11.2 安装完毕后,打开"伏安特性"文件夹,选择打开"VATeXing.exe" 操作软件,如图 20 即为上位机操作软件。
- 11.3 在 "VATeXing. exe" 操作软件中,下方选择互感器种类 "CT" 或 "PT", 应用语言"中文"或"英文"。
- 11.4 如需生成报告格式文件,必须载入试验结果数据,具体操作方法如下:a)、将存储试验数据的U盘连接至计算机。
 - b)、在图 20 中选择打开"选择文件",出现图 21 操作窗口,在图 21 中可根据需要载入所需文件。
 - c)、试验结果数据说明:以"A"为开头的数据为励磁特性结果数据,以 "B"为开头的数据为变比极性结果数据,以"C"为开头的数据为负 荷结果数据,以"D"为开头的数据为直阻结果数据。以"E"为开头 的数据为角差比差结果数据,以"T"为开头的数据为暂态结果数据。
- 11.5 载入数据结束后,选择"确定"出现图 22 界面,在此界面右上方设置相应参数后,选择"生成误差曲线"则完成所有试验结果的载入。
- 11.6 载入全部完成后,可根据需要选择"保存"或打印结果数据。
- 11.7 选择"保存"选项,则以 WORD 的形式显示结果如图 23。
- 11.8 如需继续加载试验结果数据,请先清除上次载入的数据。

XGFM-D 互感器综合测试仪

武汉西高华电电气有限公司

➢ HGQC5 3.0		45]	
ан 5: 	\$3% 5 :		15:			
	伏安特性曲线	电流A			A 0 5% 0 10%	
拐点电压:	拐点电流:			M: ZII:	计算误差由	曲线
一次电流		二次电流2	 	二次电流4	二次电流5	二次电流6
			, 误差		-	
百分比	1%	5%	20%	50%	100%	
额定一次: 额定负荷: 二次绕组电阻 二次负荷:	1.	额定二 实际负	次: 荷:			
		1 1	暂态数据			
Kr	Ts Lu	Ls	Fs	ALF 80	٤ [^]	Ktd Kssc
ост С F	۲ ۲ (PŤ	C English	打开	文件 保存	打印帮	助退出

图 20

💈 打开文件		
伏安特性		
变比/极性		
实际负荷		
二次绕组电阻		
误差		
暂态数据		
	确定 清除 取消	

武汉西高华电电气有限公司

🤰 HGQCS 3.0)										_ 🗆 🗵
编号: 0105		线号:		组	号:		相序:]	时间:	13/10/3	31
	伏安特性	:曲総		电流A	电压V	•	G 14 C 54	G 5% C	10%	м	ZII 🔺
1676 I				0	0	1460.23	1			0.04	5136.84
				0.002	195.2		1			0.08	5136.84
1658.8				0.004	390.4	475.23				0.12	5136.84
No. Contraction				0.006	585.6					0.16	5136.84
1477.3				0.008	780.8	102.41	1.0			0.2	5136.84
1262.1				0.01	976					0.3	3805.26
1303.1				0.015	1084.5	19.23				0.4	3042.37
1248.5				0.02	1156.1	4 41				0.5	2534.11
0.045	0.2 0.4	85 7	20	0.025	1203.7			15 00	400	0.6	2153.86
				0.03	1227.7		0.9 3	15 30	400	0.7	1863.61
拐点电压U	=1019.4V 3	拐点电压 I=0.	012A	0.035	1239.3	→ M:40	0 ZII:4.4	1 计算	[误差曲线	0.8	1630.79
1712 HORO-1	010.47	MAR 4510 1-0.0			ਗੋਤ Ц - 1	+17.64					
一次由流	(→)	· 水由 · 協 1	一次由	· 這 2	(女)に/	1次1主	一次由法4	一次由法	5	<u>→</u>)ヤ।	出法6 1
402.84		0 402	-1/-6	1010-		60160	-1/16064	-12-601			50000
变比	11	000.2:1									
极性		减极性			<u>на т</u>	£					
	6		=		话君	Ē	4000	1 4000	1		
日分比 色差		1%	5%		20	2	100%	120%			
用左 比差		0.493	-0.34	+ 3	-0.2	3 29	0.101	0 107			
额定一次	1000 A		落	気定二火	ד. 1 A						
额定负荷:	30 VA		19	和示负有	青 满载						
二次绕组	电阻: 40Ω										
二次负荷	20.1VA	4									
		20			暂态数	效据					
Kr	Ts	Lu	Ls		Fs	ALF	5 C	ε^	Ktd		Kssc
:0001.0%	:01.2705	:0005.1H	:0000.	OH	:00000	:00000	:0042.9%	:0000.0%	:0005.8		0000.0
⊙ CT	C PT	● 中文	C Englis	h		打开文件	保存	打印	帮助	通	1 出

图 22

编号: 0105.)	线号:	组号: 相序: 目		日期:	日期: 13/10/31			
æ	TNELIS MUR	电流 A+ ²	电压 V.,	(*	1A (* 5A		M.,	Z11.1
1676		0.1	0.1	1460.23			5.1	288. 86.
658.8		0.015.	1084. 5.1	475.23			8.1	184. 07.,
477.3		0. 045.1	1248. 5.1	102.41			11.,	138.32.
363.1		0. 075.1	1301.8.1	19.23			14.1	109.05.
248.5		0. 15.1	1354. 4.,	4.41			17.1	91.47.
0.045 0.2	0.85 7 20	0. 45.,	1407. 5.1	0.9	3 15	90 400	20.1	79.15.
相点率用U=1019.4V	R点申乐 1=0.012A	0. 75.,	1450.3.1	Nº 20 ET	////		50.,	33. 72.,
		1, 5,,	1560. 7.1				80.,	21.54.,
		4. 5.,	1644. <mark>4</mark> .,				120.1	14. 52.1
U=1019. 4V.,	I=0. 012A	20.1	1676.1	M: 400).1	ZII: 4.41.,	400.1	4. 41.,
	(d)	- 000	麦比 /	极性₽	10		3	ġ.
一次电流,	二次电流 1., 1	二次电流 2.,	二次电流	Ř3.₁ 二	次电流 4.	二次电流:	5., 二	次 电 流 6.
402. 8A.1	0. 402.1	62	22			1.1		2
变比.,	1000. 2:1.1	S.I	а		Si .	a.		а
极性。	- 微极性。	.1	,a		.1	3		а
			误差	ŧ₽			C.	
百分表。	1%	5	· · · · · ·	20%	a.	100% .,	-	120% .,
急減。	15. 1.,	11	. 4.,	6. 3.,		3. 1.,		3.,
比差。	-0. 493.1	-0.	343.1	-0. 229	54	0.101.,	0). 107.,

图 23

附录

附录一、 "校准"测试方法(以 CT 为例)

图 24, 校准测试主界面

图 25, 电压校准接线图

1) 参数设置:

进入 CT"励磁"测试界面后,选择进入"校准"试验界面,设定好励磁电流值: 0.1A ~ 5A;励磁电压值: 1V~1000V。

2)开始:

电压校准试验参照图 24 进行接线;设置好被测电压后,合上功率开关,选择"开始"选项,按下控制器,试验即开始,试验到达设定值后将保持输出电压/电流值用于检测。

电流校准试验参照图 25 进行接线,电压设定值略高于【电流设定值 (A)*负载(Ω)】,设置好被测电流/电压值后,合上功率开关,选择"开 始"选项,按下控制器,试验即开始,试验到达设定值后将保持输出电流 /电压值用于检测。

附录二、售后服务承诺 ,本产品保修一年,终身维护。

附录三、误差曲线说明

根据互感器二次侧的励磁电流和电压计算出的电流倍数(M)与允许二次负荷(ZII)之间的 5%、10%误差曲线的数据中也可判断互感器保护绕组是 否合格:

1) 在接近理论电流倍数下所测量的实际负荷大于互感器铭牌上理论负荷值,

说明该互感器合格如图 26 数据说明;

 2)在接近理论负荷下所测量的实际电流倍数大于互感器铭牌上的理论电流 倍数,也说明该互感器合格如图 26 数据说明;

保护用电流互感器二次负荷应满足 5%误差曲线的要求,只要电流互感器二次 实际负荷小于 5%误差曲线允许的负荷,在额定电流倍数下,合格的电流互感器 的测量误差即在 5%以内。二次负荷越大,电流互感器铁心就越容易饱和,所允 许的电流倍数就越小。因此,5%误差曲线即 n/ZL 曲线为图 9 所示曲线。在图 26 中例所示(所测保护用 CT 为 5P10 20VA):其中 5 为准确级(误差极限为 5%), P 为互感器形式(保护级),10 为准确限值系数(10 倍的额定电流),20VA 表示 额定二次负荷(容量)。电流倍数为 10.27 倍(接近 10 倍)时,所允许的二次负 荷为 27.19 Ω,大于该 CT 的额定负荷 20VA(20VA/1=20 Ω),通过该数据可判断该互 感器合格。另外,在二次负荷为 19.58 Ω(接近 20 Ω)所允许的二次负荷为 27.19 Ω,大于该 CT 的额定负荷 20VA(20VA/1=20 Ω),通过该数据可判断该互感器合格。 另外,在二次负荷为 19.58 Ω(接近 20 Ω)时,所允许的电流倍数为 12.85 倍,大 于该 CT 的额定电流倍数(10 倍),通过该数据也可判断该互感器合格。其实, 只要找出这两个关键点中的任意一个,即可判断所测互感器是否合格。

如果10%误差不符合要求一般的做法有:

- 增大二次电缆界面积(减少二次阻抗)
- 串接同型同变比电流互感器(减少互感器励磁电流)
- 改用伏安特性较高的绕组(励磁阻抗增大)
- 提高电流互感器变比(增大励磁阻抗)

K型 CT	PT	
n	Z2(Q)	ì
0.402	496.4	
0.828	332.1	
1.283	224.5	
1.695	172.2	
4.127	70.71	
6.835	41.19	
10.27	27.19	
12.85	19.58	
15.22	15.71	

图 26

误差曲线计算公式: $M = (I^*P) / N$ | 电流 N=1 (1A 额定电流) N=5 (5A 额定电流) P=20 (5%误差曲线)

ZII = (U - (I * Z2)) / (K * I)U 电压 | 电流 **Z2 CT** 二次侧阻抗 K=19(5%误差曲线.1A5A 额定电流) P=10 (10%误差曲线) K=9 (10%误差曲线.1A 5A 额定电流)

附录四、时间设置说明

附录五、智能提示说明

在做各种测试时,新上手的用户可能会对接线及操作不熟练,导致实验数 据出现错误的结果。在这种情况下,会让您无所适从,基于此我们加上了一些简 单的智能提示,使新用户更易上手,使老用户减少误操作。

如图48到图51,举例说明了伏安特性与变比极性测试时易出现的一些问题。

- 1、 伏安特性测试时空开(功率开关)忘记打开的提示。
- 2、 伏安特性测试时接线错误的提示。(CT 的二次绕组应接在 K1/K2, 有时用 户会误接在 S1/S2)。
- 3、 变比极性测试时空开忘记打开或者一次电流线没有接上。
- 4、 变比极性测试时 CT 二次的接线没有接对。